
P9-010

BHV-8000, a selective brain-penetrant TYK2/JAK1 inhibitor for neuroinflammatory and neurodegenerative diseases, demonstrates favorable pharmacokinetics/pharmacodynamics and safety in phase 1 studies

Lindsey Lee Lair¹, Peter Ackerman¹, Raj Bhardwaj², Bavani Shankar¹, Ifan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Irfan Qureshi¹, Vlad Coric¹, Inder Standall Killingsworth¹, Reice Car¹, Reice Car¹, Reice Car¹, Inder Standall Killingsworth¹, Reice Car¹, Inder Standall Killingsworth¹, Reice Car¹, Reice ¹Biohaven Pharmaceuticals, Inc., New Haven, CT, USA; ²Certara, Radnor, PA, USA

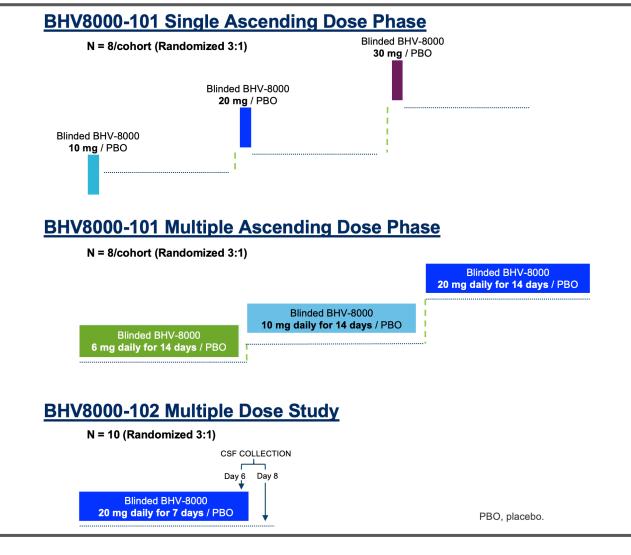
INTRODUCTION

- Central and peripheral inflammation drive the progression of Alzheimer's and Parkinson's diseases¹⁻³
- The Janus kinase (JAK)—signal transducer and activator of transcription (STAT) signaling pathway, which is critical for regulating immune response, is highly dysregulated in Alzheimer's and Parkinson's diseases^{2,4-7}
 - JAK1 signaling mediates interferon (IFN)-γ–associated microglial dysfunction and escalating inflammation in the central nervous system (CNS)^{2,3,7}
 - Tyrosine kinase 2 (TYK2) signaling promotes activation of glial cells in the CNS, B and T cells in the periphery, and downstream production of interleukin (IL)-17A⁸⁻¹²
 - TYK2-mediated phosphorylation of tau interferes with the autophagic clearance of this protein, facilitating its pathological accumulation in the brain. Knockdown of TYK2 reduces pathogenic tau levels in a tauopathy mouse model¹³
- BHV-8000—a novel, highly selective inhibitor of TYK2/JAK1 that avoids the safety liabilities of JAK2/3 inhibition—is being developed as a disease-modifying therapy for Alzheimer's and Parkinson's diseases as well as other neurodegenerative conditions (Figure 1)

BHV-8000 is a brain-penetrant inhibitor of TYK2 and JAK1 that effectively blocks both glial activation in the CNS and T-cell infiltration from the periphery, which drive neuronal loss in neurodegenerative disorders like Alzheimer's and Parkinson's diseases

Presented at the American Academy of Neurology April 5-9, 2025 | San Diego

OBJECTIVES


data from the study BHV8000-102 to evaluate:

- Safety and tolerability (BHV8000-101 and -102)
- Plasma pharmacokinetics (PK) (BHV8000-101 and -102)
- Cerebrospinal fluid (CSF) PK (BHV8000-102)
- Pharmacodynamics (PD) of BHV-8000 (BHV8000-101)

METHODS

males and females aged 18-55 years (**Figure 2**)

Figure 2. BHV8000-101 and BHV8000-102 Study Design

Randomization and Dosing

- BHV8000-101 single ascending dose (SAD) phase: 8 participants randomized 3:1 to receive one dose of either BHV-8000 (10, 20, or 30 mg) or placebo
- BHV8000-101 multiple ascending dose (MAD) phase: 8 participants randomized 3:1 to receive either BHV-8000 (6, 10, or 20 mg) or placebo by mouth once daily × 14 days
- BHV8000-102: 10 participants randomized 3:1 to receive BHV-8000 (20 mg) or placebo by mouth once daily × 7 days

Pharmacokinetics and Pharmacodynamics

- In BHV8000-101, plasma PK samples were collected up to 72 hours post-dosing in the SAD and MAD phases. Inflammatory biomarkers were collected pre-dosing (Days 1 and 14) and 24 hours post-dosing (Day 15)
- In BHV8000-102, CSF PK samples were collected at 6 hours (Day 6) and 24 hours (Day 8) post-dosing
- All BHV-8000 PK data were analyzed with a validated liquid chromatography/mass spectrometry assay, and PK parameters were calculated using noncompartmental methods
- Evaluations of safety included adverse event (AE) monitoring, clinical laboratory tests, vital signs, electrocardiograms (ECGs), physical examinations, and the Columbia Suicide Severity Rating Scale

References: 1. Chen X, Holtzman DM. Immunity. 2022;55(12):2236-2254. 2. Yan Z, Gibson SA, Buckley JA, Qin H, Benveniste EN. Clin Immunol. 2018;189:4-13. 3. Asamu MO, Oladipo OO, Abayomi OA, Adebayo AA. Brain Res. 2023;1821:148589. 4. Hong H, Wang Y, DISCLOSURES: LLL, PA, BS, BA, RK, EA, JP, RBe, BC, IQ and Menarion. 2024;21:216. 5. Lashgari NA, Roudsari NM, Momtaz S, Sathyapalan T, Abdolghaffari AH, Sahebkar A. J Neuroimmunol. 2021;361:577758. 6. An XQ, Xi W, Gu CY, Huang X. Med Sci (Paris). 2018;34(focus issue F1):116-120. VC are employees of and have stock in Biohaven; RBh and 7. Roy ER, Wang B, Wan YW, et al. J Clin Invest. 2020;130(4):1912-1930. 8. König LE, Rodriguez S, Hug C, et al. bioRxiv. 2024;2024.06.04.595773. 9. Wan J, Fu AK, Ip FC, et al. J Neurosci. 2010;30(20):6873-6881. 10. Brigas HC, Ribeiro M, Coelho JÉ, et al. Cell Rep 2021;36(9):109574. 11. Dendrou CA, Cortes A, Shipman L, et al. Sci Transl Med. 2016;8(363):363ra149. 12. Bodega-Mayor I, Delgado-Wicke P, Arrabal A, et al. Cell Mol Life Sci. 2024;81:199. 13. Kim J, Tadros B, Liang YH, et al. Nat Neurosci. 2024;27(12):2417-2429. JAM are consultants to Biohaven. 14. Jain M, Singh MK, Shyam H, et al. Ann Neurosci. 2021;28(3-4):191-200. 15. Dai L, Shen Y. Aging Cell. 2021;20(12):e13511. 16. Bhatia D, Grozdanov V, Ruf WP, et al. J Neuroinflammation. 2021;18(1):250. 17. Muromoto R, Oritani K, Matsuda T. World J Biol Chem. 2022;13(1):1-14. 18. Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. Mol Biomed. 2023;4(1):40. 19. Leyns CEG, Holtzman DM. Mol Neurodegener. 2017;12(1):50. 20. Fruhwürth S, Zetterberg H, Paludan SR. J Neuroimmunol. 2024;390:578342. Data previously presented at CTAD24 and ADPD25. 21. Hansen DV. Hanson JE. Sheng M. J Cell Biol. 2018:217(2):459-472.

To use preliminary data from the study BHV8000-101 and repeat-dose

BHV8000-101 and BHV8000-102 are each single-center, phase 1 double-blind, placebo-controlled studies conducted in healthy adult

RESULTS

Study Population

- A total of 43 participants were treated with BHV-8000
 - Eighteen (18) participants each in the SAD and MAD
 - phases of BHV8000-101 and 7 participants in BHV8000-102
- Mean age was 39 years; 88% male; 49% Black/African American and 47% White
- A total of 15 participants received matching placebo
- Six (6) participants each in the SAD and MAD phases of BHV8000-101 and 3 participants in BHV8000-102
- Mean age was 41 years; 93% male; 73% White and 27% Black/African American (**Table 1**)

Table 1. BHV8000-101 and -102 Participant Demographics

	BHV-8000 (n = 43)	Placebo (n = 15)			
Age, y, mean (SD)	39.3 (9.1)	41.1 (10.7)			
Sex, n (%)					
Female	5 (11.6)	1 (6.7)			
Male	38 (88.4)	14 (93.3)			
Race, n (%)					
White	20 (46.5)	11 (73.3)			
Black or African American	21 (48.8)	4 (26.7)			
American Indian or Alaskan Native	1 (2.3)	-			
Other	1 (2.3)	-			
Ethnicity, n (%)					
Hispanic / Latino	23 (53.5)	9 (60.0)			

Safety

Overall Summary of Safety

- Comparable rates of AEs were observed between participants receiving BHV-8000 (9/43, 21%) and placebo (3/15, 20%)
- All AEs were mild in intensity, except 1 moderate event (headache)
- Three (3) treatment-emergent AEs (TEAEs) were observed in more than 1 participant receiving BHV-8000: headache (n = 4), constipation (n = 2), and increased LDL cholesterol (n = 2)
- There were no serious AEs

Single-Dose Safety

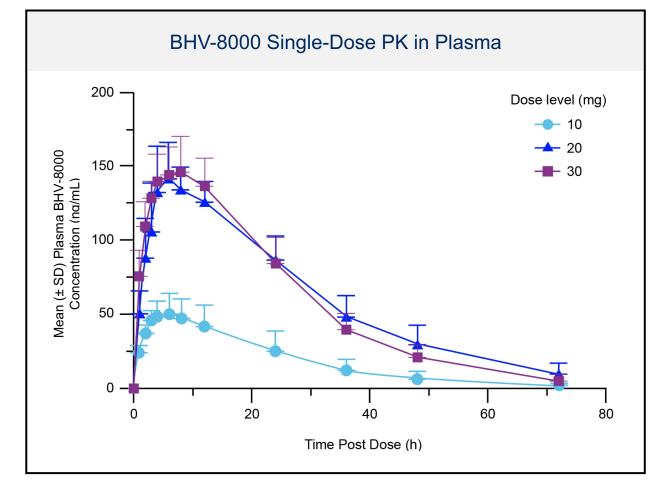
• Two (2) participants experienced a TEAE, 1 each receiving BHV-8000 (headache) and placebo (diarrhea)

Multiple-Dose Safety

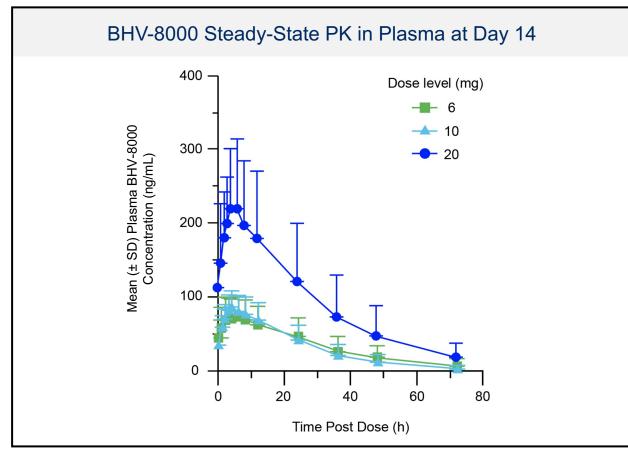
- Consistent with known JAK1 class effects, mild and asymptomatic dose-associated lowering of platelet count was observed at Day 14 in BHV8000-101. All platelet decreases were limited to CTCAE grade 1. There were no meaningful reductions in platelet count in BHV8000-102
- Overall, no adverse trends were observed across other laboratory parameters (including hematology), vital signs, or ECG findings

Single Dose PK

Fime Post Dose (h)


Pharmacokinetics

- **Overall Summary of PK**
- Median Tmax ranged from 4 to 6 hours
- The geometric mean half-life for BHV-8000 ranged from 11 to 14 hours
- Low to moderate PK variability was been ved to the second se


Single-Dose Plasma PK

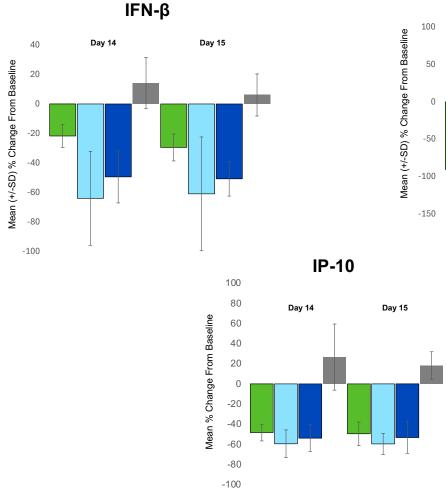
- Increasing the dose of BHV-8000 Pesulted in a general trend of increased drug exposure
- BHV-8000 demonstrated sustained concentrations over tim supporting once-daily dosing (Figure 3)

Figure 3. BHV-8000 Single-Dose PK Support Once-Daily **Oral Dosing**

Figure 4. BHV-8000 Steady-State PK Support Once-Daily **Oral Dosing**

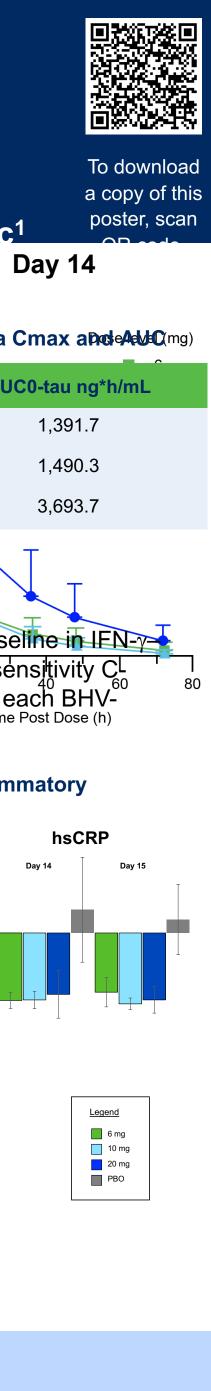
Multiple-Dose Plasma and CSF PK

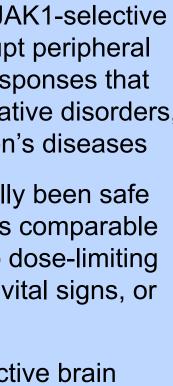
- The accumulation ratio at steady state for AUC and Cmax was ~1.8-fold across the MAD cohorts (**Figure 4** and **Table 2**)
- Mean exposures in the CSF remained above the target halfmaximal inhibitory concentration through 24 hours post-dose in the MAD study arm


Table 2. BHV-8000 Mean Steady-State Plasma Cmax and AUC(mg)

	$\widehat{}$	
Dose (mg)	Cmax ng/mL	AL
6	72.8	
10	85.7	
20	210.3	
Pharmacodynan		

Serum PD Biomarkers


There were greater reductions from baseline in IFN-7-Inducible protein 10 kDa (IP-10), high-sensitivity C reactive protein (hsCRP), and IFN-IS in each BHV-8000 cohort vs placebo (**Figure 5**)


Figure 5. BHV-8000 Effectively Reduces Inflammatory **Biomarker Levels**

CONCLUSIONS

- BHV-8000 is a first-in-class TYK2/JAK1-selective inhibitor with the potential to interrupt peripheral and central hyperactive immune responses that drive progression of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases
- In the clinic, BHV-8000 has generally been safe and well tolerated, with rates of AEs comparable to placebo, no serious AEs, and no dose-limiting changes in laboratory parameters, vital signs, or ECG findings
- BHV-8000 CSF PK data show effective brain penetration and support once-daily oral dosing
- Recruitment for a global phase 2/3 study in individuals with early Parkinson's disease is starting in the second quarter of 2025

